Abstract
Introduction. Pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL) is the most common pediatric hematological malignancy and it remains an important cause of morbidity and mortality in children. In this study, we performed an allele-specific expression (ASE) analysis of pediatric BCP ALL with the aim to investigate the relationship between cis-regulatory mutations and gene expression patterns.
Materials and methods. Twenty-two high hyperdiploid ALL, twenty ETV6/RUNX1-positive ALL, seven TCF3/PBX1-positive ALL and twenty-eight genetically unclassified BCP ALL ("B-other") were subjected to whole genome sequencing, SNP array analysis and RNA sequencing. The binomial test was applied to estimate the allelic bias of heterozygous exonic single nucleotide variants (SNVs) in the RNA sequencing data against the genomic data. Allelic ratios >2 or <0.5, and P values <0.05 were used to identify allele-specific expression protein-coding genes.
Results. We identified 12,693 expressed genes, of which 9,672 (76%) had heterozygous exonic SNVs (informative genes), in multiple BCP ALL samples (n>2) in 77 of the investigated samples. Genes with ASE were distributed evenly across the autosomal chromosomes in the different subtypes with a range of 30 - 165 ASE genes per case (median number, 86). We found that 630 (6.5%) genes displayed ASE in multiple BCP ALL samples (n>2), of which only eight autosomal genes had monoallelic expression in more than two investigated samples. This suggests that ASE and monoallelic expression are relatively rare in BCP ALL. Gene enrichment analyses showed that pathways involving negative regulation of natural killer cell-mediated cytotoxicity and cell proliferation were enriched, indicating that ASE events possibly were associated with the cell proliferation and leukemia progression in BCP ALL. Furthermore, the hematopoiesis pathway was also enriched in ASE genes that showed high allelic expression bias (allelic ratios >2.5), suggesting that ASE genes might be associated with leukemia development. Somatic genomic aberrations that could cause ASE were also investigated in this study. All informative cases with TCF3/PBX1 rearrangement (n=4) showed monoallelic expression of the PBX1 gene, likely associated with the PBX1 truncation caused by the fusion. Additionally, CHP1, located in 15q15.1, displayed ASE in one case with an inversion involving that chromosome band, indicating a potential cis-acting element in the inversion region that regulated the CHP1 gene expression. Notably, PAX5 displayed various patterns of ASE in BCP ALL. One of three cases with PAX5/ZCCHC7 gene rearrangements displayed PAX5 ASE while the other two did not, indicating a potential uncovered cis-regulatory element around the PAX5/ZCCHC7 breakpoints. Furthermore, two cases with no PAX5 gene rearrangement displayed monoallelic expression of the PAX5 gene, suggesting that there are additional epigenetic alterations were also involved in the regulation of PAX5 gene expression in BCP ALL.
Conclusions. In this study, we have characterized genes displaying ASE in childhood BCP ALL. Our data provide new insight into pathogenesis of BCP ALL and may be used to identify novel targets for treatment.
No relevant conflicts of interest to declare.